

Open Journals of Physical Science (OJPS) ISSN: 2734-2123 Article Details: openjournalsnigeria.org.ng/pub/ojps20200102.pdf Article Ref. No.: OJPS20200102 Volume: 1; Issue: 1, Pages: 11-15 (2020) Accepted Date: March 05, 2020 © 2020 Dalhatu *et al.*

RESEARCH ARTICLE

Open Journals Nigeria (OJN) Open Access | Bi-annual | Peer-reviewed www.openjournalsnigeria.org.ng editorial@openjournalsnigeria.org.ng

OJPS20200102

LUMINESCENCE BEHAVIOUR OF DY³⁺ ION DOPED MAGNESIUM SULFOBORATE PHOSPHOR FOR WHITE LIGHT EMITTING DIODES

^{*1}Dalhatu, A. S., ²Hussin, R., ³Ibrahim, B., ²Yamusa, Y. A. and ¹Baballe, A.

*¹Department of Physics, Bauchi State University Nigeria, 65 Gadau, Bauchi, Nigeria
Phone: +2348069364724: Email: sadgambaki@yahoo.com
Phone: +2348139099865: Email: ababalle@yahoo.com
²Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johore Bahru, Johore, Malaysia
Phone: +60199898425: Email: roslihussin@utm.my
Phone: +601136983790: Email: yamusaabdullahi@yahoo.com
³Department of Physics, School of Sciences, Kaduna State College of Education Gidan waya, Kafanchan, Nigeria
Phone: 07068102222: Email: ibshekwolo@yahoo.com

ABSTRACT

Several studies showed the interesting properties of trivalent lanthanide ions when doped in various types of phosphor. Magnesium sulfoborate phosphor doped with different concentrations of Dy^{3+} were synthesized using solid-state reaction method at 850 °C for 4 hours. The samples were characterized by X-ray Diffraction (XRD). The excitation and luminescence properties of MgO-SO₄-B₂O₃:Dy³⁺ were determined. The emission spectrum of Dy³⁺ ion doped MgO-SO₄-B₂O₃ phosphor exhibit three bands at 480 nm, 573 nm and 660 nm with excitation of 386 nm due to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, ${}^{6}H_{13/2}$ and ${}^{6}H_{11/2}$ of Dy³⁺ transitions, respectively. The excitation spectrum of Dy³⁺ ion doped MgO-SO₄-B₂O₃ phosphor display several bands at 347 nm, 362 nm, 386 nm, 426 nm, 449 nm and 469 nm with emission of 573 nm, which is in agreement with the ultraviolet LED (349.9–410 nm) and blue LED (450–470 nm). An intense in the emission peak at 573 nm in the yellow region was observed with the 0.5 Dy₂O₃. The luminescence properties of phosphor show that MgO-SO₄-B₂O₃:Dy³⁺ phosphor could be potentially used as white LEDs.

Keywords: Magnesium Sulfoborate, Phosphors, White LEDs, Luminescence properties

LICENSE: This work by Open Journals Nigeria is licensed and published under the Creative Commons Attribution License 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided this article is duly cited.

COPYRIGHT: The Author(s) completely retain the copyright of this published article. **OPEN ACCESS:** The Author(s) approves that this article remains permanently online in the open access (OA) mode.

OA: This Article is published in line with "COPE (Committee on Publication Ethics) and PIE (Publication Integrity & Ethics)".

INTRODUCTION

White light emitting diodes (WLEDs) in the field of solid-state lighting are promising new emitting light source due to their long life time, environmental-friendlessness and energy saving devices (Krames et al., 2007; Pavani et al., 2011). The previous study used three methods in order to generate white light, one by the use of primary tricolor phosphor, two by UV-LED+RGB and third by blue LED combined with yellow emitting phosphor as shown in Figure 1 (Ratnam et al., 2009; Ye et al., 2010). White light emission resulted from a single-phase phosphor with high luminous efficiency is required (Ratnam et al., 2010). Therefore, single phase of white-emitting luminescence is UV required for -pumped white LEDs to enhance the luminescence and efficiency (Nagpure et al., 2010). Phosphors doped rare earth ions have been studied by many researchers due to white light emission application. Dysprosium ions have two intense bands in the blue (484 nm) from transition of ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ and yellow (575 nm) from transition of ${}^{4}F_{9/2}$ $\rightarrow {}_{6}H_{13/2}$ (Zhang et al., 2012). There are many reports on hosts doped with trivalent dysprosium ions, such as, phosphate NaCaPO₄: Dy³⁺ (Ratnam et al., 2010), borates Ba₂LiB₅O₁₀:Dy³⁺ (Liu et al., 2011), silicate CaMgSi₂O₆:Dy³⁺ (Chen *et al.*, 2009) and some oxide Y_2O_3 :Dy³⁺ (Jayasimhadri *et al.*, 2010). Among these phosphors, borate phosphors have been attracted much attention because of its a simple preparation, stable crystal structure, high thermal stability and cheap raw material (Li et al., 2010). However, to the best of our knowledge, there has been no report on MgOSO₄B₂O₃:Dy³⁺ for application in white LEDs. Therefore, in this paper, a novel white MgOSO₄B₂O₃:Dy³⁺ phosphor was prepared by conventional solid-state reaction method and their photoluminescence properties, such as excitation and emission were presented.

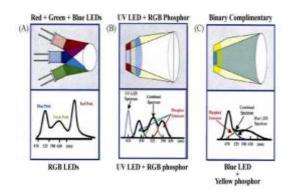


Figure 1: Diagram showing three way to generate white light from LEDs: (A) red + green + blue-LEDs, (B) UV-LED + RGB phosphors, and (C) blue-LED + yellow phosphor (Ye *et al.*, 2010)

EXPERIMENTAL PROCEDURE

A series of MgO-SO₄-B₂O₃:Dy³⁺ samples were synthesized using solid state reaction method. Analytical reagent MgO, H₂SO₄, B₂O₃ and Dy₂O₃ (99.99%) were used as the raw materials. The Dy³⁺ ion concentrations ranged from 0.1 mol% to 0.7 mol% in MgO-SO₄-B₂O₃. After raw materials were mixed and grained thoroughly in an agate mortar, the mixed powders were placed into alumina crucible and heat at 800 ⁰C for 2 hours inside the electric furnace. The samples were cooled to room temperature, thus the MgO-SO₄-B₂O₃:Dy³⁺phosphors were obtained. The phosphor samples are grained to powder form for characterization. The structure of samples of Dy³⁺ ion doped MgO-SO₄-B₂O₃ phosphor were characterized by powder X-ray diffraction (XRD) (Rigaku D/MAX-2500, Cu Kα, 40 kV, 150 mA). The emission

as well as excitation were measured using SHIMADZU RF-540 UV spectrophotometer. The luminescence characteristics of these phosphors were measured at room temperature.

RESULTS AND DISCUSSION

XRD, EDX AND SEM ANALYSIS

MgO-SO₄-B₂O₃ has cubic structure with F-43c (219) space group, and its lattice parameters are a=12.0970 nm, b=12.0970 nm, c=12.0970 nm (PDF card No: 00-026-1254). The XRD pattern of the MgO-SO₄-B₂O₃ with concentration ranged from 0.1 to 0.7 mol% of Dy³⁺ as shown in Figure 2. We observed that all samples have the same pattern, and index to the MgOSO₄B₂O₃ crystalline phase. The results here also show that Dy³⁺ ions do not form any new phases in the synthesis process.

Figure 3 shows the energy dispersive X-ray (EDX) of the MgO-SO₄- B_2O_3 : 0.5Dy³⁺ phosphor. In EDX the phosphor consists of Mg, S, O, B and Dy elements, thus the EDX spectrum shows all the major elements used in the prepared sample.

Figure 4 shows the scanning electron microscope (SEM) image of the sample. In SEM the shape of the phosphor particle of the 0.5% Dy₂O₃ indicates the crystalline nature of the sample, and homogeneity is observed.

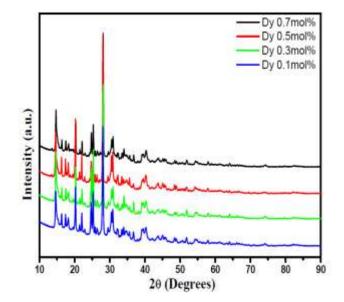


Figure 2: XRD pattern of MgO-SO₄-B₂O₃:Dy³⁺

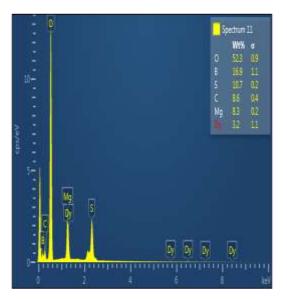


Figure 3: EDX spectra of MgO-SO₄-B₂O₃: 0.5 Dy³⁺phosphor

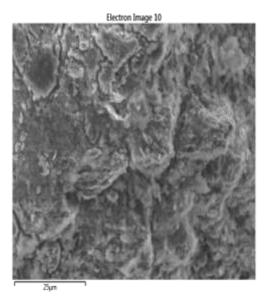


Figure 4: SEM image MgO-SO₄-B₂O₃: 0.5 Dy³⁺phosphor

LUMINESCENCE PROPERTIES

The excitation spectra of the MgO-SO₄-B₂O₃:Dy³⁺ phosphor is shown in Figure 5. The excitation spectrum for 573 nm emission exhibit six bands at 347 nm, 362 nm, 386 nm, 426 nm, 449 nm and 469 nm (Li *et al.*, 2008). The emission spectra of MgO-SO₄-B₂O₃:Dy³⁺ phosphor shows three bands at 480 nm, 573 nm and 660 nm under excitation 386 nm, which correspond to the transitions of ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, ${}^{6}H_{13/2}$ and ${}^{6}H_{11/2}$ of Dy³⁺, respectively, as shown in Figure 6. The emission intensities is increases with increasing Dy³⁺ concentration, and reach the maximum value at 0.5 mol% Dy³⁺, then decrease because of the concentration quenching were observed (Zhang *et al.*, 2013). The excitation and emission spectra show that the white LED can be presented through combining ultraviolet chip with MgO-SO₄-B₂O₃:Dy³⁺ phosphor is very suitable for a color converter of white LED that uses blue LED as the

primary light source, i.e., it can be used as a white phosphor excited by UVLED chip to fabricate white light, or by blue LED chip to generate white light.

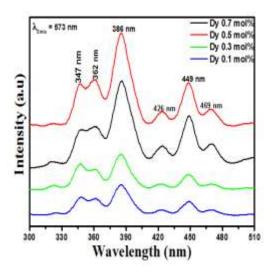


Figure 5: The excitation of MgO-SO₄-B₂O₃:Dy³⁺

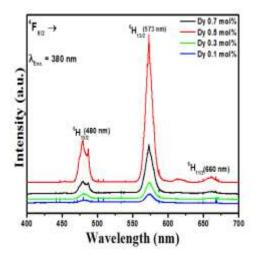


Figure 6: The emission of MgO-SO₄-B₂O₃:Dy³⁺

CONCLUSIONS

Magnesium sulfoborate doped dysprosium ions (MgO-SO₄-B₂O₃:Dy³⁺) has been synthesized using solid state reaction method. XRD analysis shows that the samples show two phases, such as monoclinic and triclinic phase. The emission spectrum of Dy³⁺ ion doped MgO-SO₄-B₂O₃ phosphor exhibit three bands at 480 nm, 573 nm and 660 nm with excitation 386 nm due to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, ${}^{6}H_{13/2}$ and ${}^{6}H_{11/2}$ transitions of Dy³⁺, respectively. The excitation spectrum with the emission of 573 nm have several bands centred at 347 nm, 362 nm, 386 nm, 426 nm, 449 nm and 469 nm, which is in agreement with the ultraviolet LED (350–410 nm) and blue LED (450–470 nm). The optimal luminescence intensity of the MgO-SO₄-B₂O₃:Dy³⁺ phosphor is found at 0.5 concentration of Dy³⁺. The results show that MgO-SO₄-B₂O₃:Dy³⁺ phosphor could be potentially used as white LEDs.

ACKNOWLEDGEMENT

The authors are grateful to the Bauchi State University, Gadau and Ministry of Higher Education Malaysia for providing financial assistance.

REFERENCES

- Chen, Y., Cheng, X., Liu, M., Qi, Z. and Shi, C. (2009). Comparison study of the luminescent properties of the whitelight long afterglow phosphors: CaxMgSi 2 O 5+ x: Dy 3+(x= 1, 2, 3). *Journal of Luminescence*, *129*(5), 531-535.
- Jayasimhadri, M., Ratnam, B., Jang, K., Lee, H. S., Chen, B., Yi, S. S. and Moorthy, L. R. (2010). Greenish-Yellow Emission from Dy3+-Doped Y2O3 Nanophosphors. *Journal of the American Ceramic Society*, *93*(2), 494-499.
- Krames, M. R., Shchekin, O. B., Mueller-Mach, R., Mueller, G. O., Zhou, L., Harbers, G. and Craford, M. G. (2007). Status and future of high-power light-emitting diodes for solid-state lighting. *Display Technology, Journal of*, 3(2), 160-175.
- Li, P., Wang, Z., Yang, Z., Guo, Q. and Li, X. (2010). Luminescent characteristics of LiCaBo 3: M (M= Eu 3+, Sm 3+, Tb 3+, Ce 3+, Dy 3+) phosphor for white LED. *Journal of Luminescence*, *130* (2), 222-225.
- Li, P., Yang, Z., Wang, Z. and Guo, Q. (2008). White-light-emitting diodes of UV-based Sr 3 Y 2 (BO 3) 4: Dy 3+ and luminescent properties. *Materials Letters*, 62(10), 1455-1457.
- Liu, Y., Yang, Z., Yu, Q., Li, X., Yang, Y. and Li, P. (2011). Luminescence properties of Ba 2 LiB 5 O 10: Dy 3+ phosphor. *Materials Letters*, 65(12), 1956-1958.
- Nagpure, I., Pawade, V. and Dhoble, S. (2010). Combustion synthesis of Na2Sr (PO4) F: Dy3+ white light emitting phosphor. *Luminescence*, 25(1), 9-13.
- Pavani, K., Kumar, J. S., Sasikala, T., Jamalaiah, B., Seo, H. J. and Moorthy, L. R. (2011). Luminescent characteristics of Dy 3+ doped strontium magnesium aluminate phosphor for white LEDs. *Materials Chemistry and Physics*, 129(1), 292-295.
- Ratnam, B., Jayasimhadri, M., Jang, K., Sueb Lee, H., Yi, S. S. and Jeong, J. H. (2010). White Light Emission from NaCaPO4: Dy3+ Phosphor for Ultraviolet-Based White Light-Emitting Diodes. *Journal of the American Ceramic Society*, 93(11), 3857-3861.
- Ratnam, B., Jayasimhadri, M., Yoon, J., Jang, K., Lee, H.-S., Yi, S.-S. and Jeong, J. H. (2009). Luminescent Properties of Tb3+-Doped NaCaPO4 Phosphor. *Journal of the Korean Physical Society*, 55(6), 2383-2387.
- Ye, S., Xiao, F., Pan, Y., Ma, Y. and Zhang, Q. (2010). Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. *Materials Science and Engineering: R: Reports*, 71(1), 1-34.
- Zhang, X., Lu, Z., Meng, F., Hu, L., Xu, X., Lin, J. and Tang, C. (2012). Luminescence properties of Ca 3 Si 2 O 7: Dy 3+ phosphor for white light-emitting diodes. *Materials Letters*, 79, 292-295.
- Zhang, Z.-W., Sun, X.-Y., Liu, L., Peng, Y.-s., Shen, X.-h., Zhang, W.-G. nd Wang, D.-J. (2013). Synthesis and luminescence properties of novel LiSr 4 (BO 3) 3: Dy 3+ phosphors. *Ceramics International*, *39*(2), 1723-1728.