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ABSTRACT  

The potential of deep learning models to automate and enhance various processes has garnered significant attention for their use in 

agricultural applications in recent years. One notable application is the use of convolutional neural networks (CNNs) for classifying plant 

diseases. An extensive assessment of the MobileNet architecture for the task of classifying tomato diseases is presented in this research. 

Because of its lightweight architecture, MobileNet is renowned for its effectiveness and adaptability for embedded and mobile devices. We 

use a publicly available dataset to investigate MobileNet's effectiveness in classifying various tomato illnesses. Comparing MobileNet to 

other deeper topologies, experimental results show how successful it is at achieving high accuracy with reduced computational complexity. 

We obtained 97% accuracy, classifying nine disease categories plus one healthy category using the leaves of the tomato plant as a feature. 

Keywords: MobileNet, tomato disease classification, Deep learning, Convolutional neural networks, Agricultural applications. 

 



INTRODUCTION 

Agriculture has always been associated with the cultivation of key crops deemed necessary for our diet and, more 

importantly, our survival. It is one of the basic human necessities. Agriculture research mainly tries to improve food 

productivity and quality. Livestock, fishing, forestry, and agricultural production are the four main industries of 

agriculture in a developing nation like Nigeria. With crop production accounting for about 87.6% of total output, it is 

the most prominent sector (Taiwo Oyaniran, 2020). The remaining industries provide 8.1%, 3.2%, and 1.1% of the total 

for forestry, fishery, and livestock, respectively. Agriculture contributes around 24% to Nigeria’s GDP, making it one 

of the largest sectors in the country. It is essential for both domestic consumption and export (National Bureau of 

Statistics, 2024). Moreover, this sector is the largest in the country, employing over 36% of the labor force. Because of 

this, the governments of many developing nations dedicate a sizable portion of their yearly budgets to advancing 

agriculture and implementing scientific and technological farming methods (Sarfo et al., 2024). 

Tomato is one of the crops highly valued in Nigeria, especially for preparing rice and stew, and it is a very short-

duration crop with high production and commercial worth (Ugonna et al., 2015). Tomatoes are fleshy vegetable fruits 

that can be cultivated in small plots in the garden or in huge commercial numbers. It is a popular element in Nigerian 

cuisine(Danmaigoro et al., 2024). In 2023, Nigeria's total tomato production was approximately 3.7 million metric tons. 

This figure reflects a steady increase in the country’s tomato output, driven by improvements in farming practices and 

a focus on increasing agricultural productivity. Nigeria ranks among the top 10 tomato-producing countries globally, 

contributing significantly to the overall supply of fresh tomatoes in Africa (Danmaigoro et al., 2024).  

According to (Damicone et al., 2007), tomato infections are divided into two categories. The initial type of infection 

arises from pathogenic microorganisms, including fungi, bacteria, viruses, and nematodes (Chandrashekar & George, 

2024). The second group includes non-infectious factors related to physical or chemical causes, such as adverse 

environmental conditions, nutritional or physiological irregularities, and damage from herbicides. Tomato problems 

can arise from bacteria, fungi, or improper cultivation practices, with bacteria responsible for 16 diseases and insects 

causing five additional issues. Ralstonia solanacearum is the bacteria that causes a severe case of bacterial wilt. This 

bacterium can live in the soil for a very long time and enter roots through wounds caused by insects, farming, 

transplanting, or other human activity. It can also enter roots naturally by secondary root emergence. High moisture 

content and high temperatures are ideal for the growth of diseases. The bacteria rapidly multiply within the plant's 

water-conducting tissues, leading to the accumulation of slime. The vascular system of the plant is impacted, even 

though the leaves might not turn yellow(Hari et al., 2024). An infected plant's cross-section shows a brown stem with a 

substance that seems yellowish seeping out (Damicone et al., 2007). 

Currently, professionals rely on manual inspection to detect plant illnesses. This method requires constant monitoring 

by numerous experts, making it costly for large farms (Singh et al., 2015). Additionally, farmers in some countries are 

not proactive in seeking expert assistance. Visual detection of plant diseases through physical inspection is a labor-

intensive process that is often less precise and limited in scope. The vascular system of the plant may be affected by 

this technique, even if the leaves might stay green. There is a need for automated, cost-effective, and scalable solutions 

that can help farmers detect and manage tomato diseases early and accurately. 
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The aim of this study is to provide a comprehensive evaluation of the MobileNet architecture in classifying tomato 

diseases using image data, with a focus on practical deployment in real-time agricultural applications. This research 

seeks to determine the accuracy, efficiency, and practicality of MobileNet for real-time disease diagnosis, contributing 

to the advancement of agricultural technologies that can help farmers identify and manage crop diseases more 

effectively. 

The objectives of this study were to: 

i. review existing methods for tomato disease classification, with a focus on deep learning models and their 

performance in agricultural applications. 

ii. implement and fine-tune MobileNet for the classification of common tomato diseases, utilizing a dataset of 

labeled images. 

iii. assess the accuracy and efficiency of the MobileNet architecture in identifying various tomato diseases 

compared to other convolutional neural network (CNN) models. 

iv. propose enhancements or modifications to MobileNet (if needed) to improve classification accuracy, 

especially in challenging scenarios such as partial occlusion or poor lighting conditions. 

v. evaluate the potential for real-time deployment of the model in practical farming applications, focusing on 

ease of use and integration with existing agricultural tools or apps. 

a. CONVOLUTIONAL NEURAL NETWORK 

 The feature extraction process, a linear operation called convolution plays a crucial role. This operation entails applying 

a small array of numbers, known as a kernel or filter, to an input tensor array. The kernel slides over the input, computing 

dot products at each position. These dot products capture local patterns and features, allowing the network to learn 

relevant representations. Convolutional neural networks (CNNs) heavily rely on this convolution operation to extract 

meaningful features from images, text, or other data. The resulting feature maps serve as input to subsequent layers, 

enabling hierarchical feature learning. Convolutional networks have positioned deep learning as the leader in nearly 

every machine learning task. After a brief mathematical introduction to convolution, its primary use in CNNs is to extract 

features from input images (Christopher et al., 2023; Shin et al., 2016). 

For high-resolution images, artificial neural networks (ANNs) struggle with the curse of dimensionality, whereas 

convolutional neural networks (CNNs) perform some pre-processing. This allows the network to learn from filters before 

making the final classification. By enforcing pattern connectivity among neurons in adjacent layers, CNNs use filters to 

detect spatial locality. Image processing involves multiplying each element in a matrix by its neighboring elements, with 

the kernel (or filter) weighting or biasing the results. 

In their study, Zhang et al. (2018) employed a deep convolutional neural network (CNN) for tomato leaf disease 

identification using transfer learning. The CNN backbone included AlexNet, GoogLeNet, and ResNet. The best-

combined model was modified to examine the performance of training and fine-tuning the CNN. Experimental results 

demonstrated that the proposed technique effectively identifies tomato leaf disease and can be generalized to detect other 

plant diseases. The storage space required by the proposed model is approximately 1.5 MB, whereas the pre-trained 
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models used in the study require around 100 MB, highlighting the efficiency of the proposed model over pre-trained 

ones. 

Gupta (2020) developed an automatic technique that uses the unique features of diseased and healthy leaves to identify 

tomato plant leaf diseases. This approach entailed comparing the output of the neural network across different data 

subsets while employing a back-propagation neural network (BPNN) for pattern identification. This procedure consists 

of the following steps: gathering images, pre-processing, feature extraction, creating subsets, and classification. The 

study examined five different kinds of diseases that affect tomato leaves, primarily concentrating on using CNN 

techniques to identify and categorize these diseases. 

To identify and categorize tomato leaf diseases, Ahmad et al. (2020) evaluated twenty-three CNN architectures, 

including VGG-19, VGG-16, ResNet, and Inception V3, through feature extraction and parameter tuning. They tested 

the models using two datasets: a lab-based dataset and a self-collected field dataset, each with five different disease 

categories. The lab-based dataset generally produced better results, with performance variations of 10% to 15% across 

several parameters compared to the field dataset. Their main goal was to develop the most effective machine-learning 

model for identifying tomato crop diseases in standard RGB images (Ouhami et al., 2020). 

Deep learning models incorporating transfer learning, including DenseNet 121 and VGG16, were investigated as 

potential solutions to this problem. The study concentrated on photos of diseased plant leaves that were categorized 

into six categories of plant illnesses and pest infestations. A pre-trained deep convolutional neural network (CNN) 

was the foundation for the plant leaf disease diagnostic model that Anandhakrishnan and Jaisakthi (2020) suggested. 

Ten different tomato leaf classes from an available dataset were used to train the model. By experimenting with 

different batch sizes, dropout rates, and training epochs, the model's performance was optimized. Even though the 

architecture performed well, more study is required to speed up computer time spent using photos to diagnose plant 

illnesses. 

A system for categorizing apple illnesses according to color, texture, and shape features was created by Dubey and 

Jalal (2015). These features are computed, contaminated fruit segments are identified using K-means clustering, and 

apples are classified as healthy or contaminated using a multi-class support vector machine (SVM). The method 

reaches up to 93% accuracy. 

Three deep learning meta-architectures were implemented for plant disease identification by Seleem et al. (2020) 

using the TensorFlow object detection framework: the Single Shot MultiBox Detector (SSD), Region-based Fully 

Convolutional Networks (RFCN), and Faster Region-based Convolutional Neural Network (RCNN). These models 

were trained and assessed using a dataset from a controlled environment. To improve the mean average precision 

(mAP) of the best-performing architecture, many advanced deep-learning optimizers were applied. With an average 

mean precision of 73.07%, the SSD model—which was trained using the Adam optimizer—performed the best. 
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MATERIALS AND METHOD 

This section details the CNNs used for classifying tomato plant leaf diseases, focusing on developing the most suitable 

CNN model. The entire process is divided into essential steps, as illustrated in Figure 1. The system design is presented 

in a flowchart, covering the stages of image acquisition, image enhancement and color space modification, image 

segmentation, feature extraction, and the classification task. 

 

Figure 1: Research Design. 

 

a. In the data preparation stage, we gather a dataset for input. For image data, we scale and normalize the pixel 

values (ranging from 0 to 255) by dividing them by 255. The input photographs are resized to 224x224 pixels 

with three channels (Red, Green, and Blue). During feature learning, we apply convolution and pooling 

procedures. The dataset, sourced from Kaggle, is used for training and validation sets. We employ the 

MobileNet model and perform output layer pretraining. Testing and prediction datasets are captured using a 

digital camera on a farm in Afaka, Igabi (LGA) of Kaduna State. The photos are taken in an uncontrolled 

setting to maintain their original hue. With the guidance of Dr. H.A. Hamisu from the College of Agriculture 
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(ABU) in Mado Kaduna provides. The research project spans five weeks, monitoring tomato leaves to avoid 

color effects from chemical products. The farm is located in Kaduna State’s Mando, Igabi (LGA), and the 

Kaggle dataset includes images of diseased tomato leaves categorized the disease classes include bacterial 

Spot, early blight, late blight, leaf mould, septoria leaf mould, spider mites, two-spotted spider mite, target 

spot, yellow leaf curl virus, and healthy leaves. 

b. Testing and Validation: Before the model preparation, the data set is divided into training and validation. 

The CNN model is trained on a dataset kept for training and validated by the validation set.  The dataset was 

divided into training with 80% and validation having 20% to avoid under-sampling from occurring. 

c. MobileNet Model and Output Layer: A series of layers defines the defined model in Keras. We employed 

an integrated deep learning system that uses an ensemble model for detection and classification, a pre-trained 

MobileNet model for feature extraction, and stacking for detection. Originally introduced in (SIfre & Mallat, 

2014), the MobileNet model is primarily built from depth-wise separable convolutions. It was then utilized 

in the Inception models (Chollet, 2017) to reduce the amount of computation constraints in the initial layers. 

The suggested Mobilenet architecture is based on the fundamental Mobilenet paradigm. It can be described 

as a Mobilenet model that has been trained architecturally. There are enormous amounts of neurons in hidden 

levels. Before sending the input images to the next layer, the neurons in the hidden layer perform conversions 

by determining the input image's length, width, and height. The weights are modified to become more 

predictive of image class as the network learns. The pre-trained CNN Model, or MobileNet, is the model that 

is employed. Lastly, the strength or amplitude of a connection between 28 neurons is the expected property 

of the Output Layer Neuron Weights. Unit of Rectified Linear Functions are used in regression equations to 

compare weights on inputs such as coefficients. Every input node has its weights initialized, usually at 

random, with a tiny number in the 0–1 range. Among the most often used learning algorithms are feed-

forward supervised neural networks, also known as multilayer perceptions or Deep Networks. In a single 

hidden layer, every neuron is connected to other neurons with varying degrees of weight. Neurons in each 

hidden layer would be activated by the upward network progressions of the input layers, leading to the output 

value at the end. We refer to this type of network as feedforwarding. Disabling down sample layers, SoftMax 

activation function, heterogeneous kernel-based convolutions, and augmentation are some of the changes 

that are included. High probability is obtained by using the SoftMax activation function for the illness classes' 

output. 

d. As image data flows through this deep neural network, it encounters multiple hidden layers. These layers 

process features, remove outliers, identify significant patterns, and produce the predicted output. By 

removing the last six layers, disabling sample layers, and applying heterogeneous kernel-based convolutions, 

MobileNet reduces its model size. Additionally, using the SoftMax activation function and augmentation 

techniques enhances MobileNet’s accuracy. Collectively, these changes constitute the proposed MobileNet 

model, which is explained in detail in this section. 
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e. Pretraining the Model: The model is compiled using efficient numerical libraries located in the backend, 

such as TensorFlow or Theano. The backend selects the optimal method for representing the network during 

training and generates predictions for the hardware. Initially, the model had few layers, resulting in 

underfitting and lower accuracy in predicting leaf types. For training, we use a predetermined number of 

epochs (25) and a relatively small batch size (25). The SoftMax activation function is influenced by the Dense 

layer. We apply the Adam algorithm with a learning rate of 0.0001, using ‘categorical_crossentropy’ loss 

and accuracy metrics. Finally, we begin training with 25 epochs and 40 steps per epoch. Verification data is 

then used to test the trained model against the valid_generator dataset and determine its accuracy. 

f. Testing the Model: After training the neural network on the training and validation datasets, we evaluate the 

model’s performance. However, this evaluation on the same dataset does not provide insight into how the 

model will perform on new data. To assess its generalization ability, we use the test dataset. Evaluation 

metrics serve to assess the classifier’s performance. By comparing the model’s predictions with actual values 

from the test dataset, we apply mathematical methods. The precision metric calculates the percentage 

difference between accurately identified samples and the total number of instances. Accuracy is obtained by 

the ratio of correct classifications to the total number of categories as seen in equation 1 (Chollet, 2018). 

Acc =
TP+TN

TP+TN+FP+FN
                  (1) 

g. Dataset: A dataset comprising 4,860 tomato leaf images was collected for training, while 1,620 images were 

allocated for validation, and 323 images were used for testing. All images were stored in JPG format. The 

dataset includes nine disease classes related to tomato leaves, such as bacterial spot, early blight, late blight, 

leaf mould, Septoria leaf mould, spider mites, two-spotted spider mites, target spot, yellow leaf curl virus, 

and healthy leaves. The model’s dataset was divided into 80% training and 20% validation portions. Finally, 

323 image samples were used to evaluate the model’s effectiveness.

 

Figure 2: number images per category 
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h. Environment: A Computer with a CPU (core I5, 2.6GHz) is used to conduct model training. Tools required 

for this work have been installed. Accordingly, python version 3.7.4 was the one installed. All models built 

in work underwent similar data preparation processes. The difference in the models exists in the concept of 

architecture and the technique used to achieve the aim. 

RESULTS AND DISCUSSION 

A. TRAINING RESULT 

In the defined architecture, a MobileNet architecture is employed using a linear stack of layers. The model is compiled 

with specified loss functions, optimizers, and metrics. It takes image input (e.g., photographs) and produces relevant 

outputs. One-hot coding contrasts categorical variables, transforming them into binary variables. Challenges include 

irregular image shapes and potential overfitting due to dataset size. Data augmentation techniques enhance image 

classification capabilities. Dropout layers are applied to improve accuracy. Training details involve SoftMax 

activation, the Adam algorithm, and evaluation using a validation dataset. 

 

Figure 3: CNN architecture  
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Figure 4: Training and Validation process  

 

Figure 5: Accuracy chart per epoch   
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Figure 6: Confusion matrix  

B. TEST RESULTS  

After training our neural networks on the training and validation data sets, the model is now being evaluated by using 

the test data to verify the network's performance on images it has not seen throughout the training epoch; the prediction 

was able to score 97.1% as shown in Figure 6. 

 

Figure 7: Evaluation result on the test dataset 

The training results show the effectiveness of the chosen MobileNet architecture in image classification tasks, 

highlighting both its strengths and areas for potential improvement. Through the application of a linear stack of layers, 

MobileNet achieves efficient processing with relatively low computational requirements, which is ideal for image 

input processing. The model’s configuration, featuring specific loss functions, optimizers, and metrics has been 

optimized to enhance learning accuracy and reduce classification errors. One-hot encoding effectively prepares 
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categorical data, allowing the model to differentiate between classes in a clear binary format, which is essential for 

accurate label classification. 

Challenges encountered during training include handling images of varying shapes, which can hinder consistency 

across the dataset. To address this, data augmentation techniques such as random rotations, cropping, and scaling were 

applied, which not only standardize inputs but also improve the model’s robustness. This augmentation approach, 

coupled with the addition of dropout layers, mitigates overfitting by introducing regularization, thereby enhancing 

generalizability. The use of SoftMax activation and the Adam optimizer further supports stable learning, while the 

validation dataset enables ongoing monitoring of the model’s performance. 

Upon testing with unseen data, the model achieved a high accuracy of 97.1%, as illustrated in Figure 6's confusion 

matrix, which visually confirms its ability to accurately classify most images. This impressive performance 

demonstrates that the model’s training parameters and structure are well-suited to the task, and it effectively 

generalizes to new data. Future work could involve exploring additional regularization techniques or experimenting 

with more complex architectures to improve upon the already strong results, particularly if addressing larger or more 

complex image datasets. 

CONCLUSION  

In our proposed task, we trained a MobileNet-based CNN model to detect tomato crop diseases. Specifically, we 

focused on the last six layers of MobileNet and adjusted the dense layer to accommodate 46 input channels using the 

original weights. For experimentation, we utilized tomato data from the Kaggle dataset, which includes nine disease 

categories plus a healthy category. Notably, the dataset maintains a balanced distribution of healthy leaf category 

images. To enhance model accuracy, we applied data augmentation techniques. For predictions, we evaluated the 

model’s performance using a locally collected dataset. Our implementation leveraged Python programming, 

TensorFlow, and Keras libraries within the Anaconda environment, achieving an impressive accuracy score of 97.1%. 

Contribution to Knowledge: The contributions of our research are to improve the quality and quantity of tomato 

production by using image processing techniques to distinguish disease classes from healthy leaves. This enables more 

accurate detection and classification of diseases potentially harmful to the plant throughout its lifecycle, allowing 

farmers to identify types of plant disease more accurately without requiring a crop scientist to determine the kind of 

crop disease present in the farm or garden. Since not all farmers can afford constant checkups from crop scientists, 

and many cannot identify diseases correctly, this model has the potential to improve tomato production outcomes in 

Nigeria. 

Recommendation: This article’s main objective is to develop a pre-trained model to classify the tomato plant's leaf 

to detect that crop's disease. Future improvements could include detecting diseases in the crop’s other components, 

such as roots, stems, and branches which could further increase the detection accuracy more than the contemporaneous 

one. Additionally, image categorization will be done to determine whether the leaf belongs to the preferred category 

or not. Our future objective is to optimize the accuracy and collect vast data to make our dataset on profuse plant 

diseases. As agriculture employs more than half of our population, this model could serve as a significant resource for 
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farmers. Finally, the pre-trained Mobile Net model was created and can be deployed to the web to allow remote access 

through the phones and other devices. 
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