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ABSTRACT  

 
Transportation problems are computationally challenging due to their nondeterministic polynomial-time hard (NP-hard) nature, especially 

when uncertainties in costs, supply, and demand are involved. The fuzzy transportation problem addresses these uncertainties by 

representing them as fuzzy numbers, requiring robust methods for ranking and solving optimization models. Traditional exact methods 

become impractical for such problems, leading to the adoption of metaheuristic approaches. This study introduces three novel physics-

based algorithms: one single-point-based and two population-based methods. These algorithms leverage principles from gravitational 

attraction, electromagnetism, and water flow dynamics, incorporating innovative neighborhood structures tailored to the fuzzy nature of 

transportation problems. The proposed methods were tested on diverse problem sizes and compared against established optimization 

techniques, such as genetic algorithms and commercial software, using Python implementations. An experimental design methodology 

was employed to optimize parameter tuning, enhancing computational efficiency and reducing experimentation time. Results demonstrate 

that the physics-based algorithms achieve competitive performance in terms of solution quality, computational efficiency, and 

adaptability to uncertainty. These findings underscore the potential of physics-based methods to advance optimization in fuzzy 

transportation and other domains with inherent uncertainties, paving the way for further research in hybrid and multi-objective 

approaches. 

Keywords: Fuzzy Transportation Problem; Physics-Based Algorithms; Metaheuristic Optimization; Gravitational Search Algorithm; 

Electromagnetism-Like Algorithm; Intelligent Water Drops Algorithm. 
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INTRODUCTION 

In today's competitive marketplace, organizations are under pressure to deliver products to customers in a timely 

and cost-effective manner. One of the critical challenges they face is optimizing transportation networks to 

minimize costs while satisfying customer demand. This problem is typically modeled as a Transportation 

Problem (TP), which seeks to determine the most cost-efficient way to move goods from suppliers to 

consumers, given certain constraints (Alatas & Can, 2015). However, real-world transportation systems are 

subject to uncertainties in costs, resource availability, and demand. These uncertainties make classical 

transportation models less effective in practice. 

To address these uncertainties, researchers have turned to fuzzy transportation models (FTPs), which allow 

transportation costs, supply, and demand to be represented as fuzzy numbers. Fuzzy numbers can model 

imprecision, making them ideal for scenarios where exact values are not available or fluctuate (Birbil & Fang, 

2003). FTPs have become essential in modeling real-world problems, especially in logistics and supply chain 

management. However, solving FTPs efficiently is challenging due to the NP-hard nature of these problems, 

requiring advanced solution techniques (Duan et al., 2008). 

The fuzzy transportation problem (FTP) extends the classical transportation model by introducing fuzzy 

parameters that capture uncertainty in costs and quantities. Traditional deterministic methods struggle to handle 

these complexities effectively. As a result, there has been growing interest in the use of metaheuristic 

algorithms—high-level problem-solving frameworks designed to find near-optimal solutions for complex 

optimization problems (Asi & Dib, 2010). These algorithms have been successfully applied to TPs and other 

optimization problems with uncertainty, providing robust and flexible solutions (Duman et al., 2010). 

Metaheuristic algorithms, such as genetic algorithms (GA), simulated annealing (SA), and particle swarm 

optimization (PSO), have been widely used to solve FTPs due to their ability to explore large solution spaces 

and escape local optima (Han et al., 2018). However, there are limitations to these approaches, including slow 

convergence rates and the need for careful parameter tuning (Rather & Bala, 2020). These challenges highlight 

the need for more innovative algorithms that can efficiently address the complexities of FTPs. 

Physics-based algorithms have emerged as a promising alternative to traditional metaheuristics. These 

algorithms are inspired by natural physical processes, such as gravity, electromagnetism, and water flow 

dynamics, to solve optimization problems (Alatas & Can, 2015). Some notable physics-based algorithms 

include the Gravitational Search Algorithm (GSA), the Electromagnetism-like Algorithm (EMA), and the 

Intelligent Water Drops Algorithm (IWD). These algorithms leverage the principles of physical phenomena to 

navigate the solution space and find optimal or near-optimal solutions. 

For instance, the Gravitational Search Algorithm (GSA) models the behavior of objects under the influence of 

gravity, with solutions being attracted to one another based on their fitness (Rashedi et al., 2009). Similarly, the 

Electromagnetism-like Algorithm (EMA) simulates the attraction and repulsion between charged particles, 

guiding solutions toward optimal regions (Birbil & Fang, 2003). The Intelligent Water Drops Algorithm (IWD), 
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inspired by the natural flow of water in rivers, uses the concept of erosion to identify optimal paths (Shah-

Hosseini, 2009). 

These algorithms have proven effective in various optimization problems, including those involving continuous 

and discrete variables (Chatterjee et al., 2010; Rabanal et al., 2008). However, their application to fuzzy 

transportation problems remains largely unexplored. Given the success of physics-based algorithms in other 

domains, there is significant potential for these methods to improve the efficiency and accuracy of solutions to 

FTPs. 

In today's highly competitive market, organizations face increasing pressure to create and deliver value to 

customers efficiently. A critical challenge is determining how and when to send products to customers in the 

quantities they desire, all while minimizing costs. Transportation models offer a structured approach to 

addressing this challenge, ensuring the efficient movement and timely availability of raw materials and finished 

goods. 

However, real-world transportation problems often involve uncertainties in factors such as transportation costs, 

availability of resources, and customer demand. In such cases, fuzzy transportation models are useful because 

they account for these uncertainties by using fuzzy numbers to represent imprecise data. Despite the popularity 

of fuzzy transportation models, there is a gap in the application of physics-based algorithms to solve these fuzzy 

problems. 

This research proposes a new method based on physics-based algorithms for solving fuzzy transportation 

problems, where transportation cost, availability, and demand are represented by generalized fuzzy numbers. 

The novelty of this approach lies in using various new neighborhood structures tailored to the problem's nature, 

which have not been previously used. To our knowledge, no previous studies have applied physics-based 

algorithms to fuzzy transportation problems, making this approach both innovative and promising. 

AIM AND OBJECTIVES 

This research aims to develop an innovative physics-based algorithm for addressing fuzzy transportation 

problems, where transportation costs, supply, and demand are represented as generalized fuzzy numbers to 

account for uncertainties. The study seeks to bridge the gap in the application of physics-based optimization 

techniques to fuzzy transportation models, enhancing the efficiency and accuracy of solutions compared to 

conventional metaheuristic approaches. 

To achieve this aim, the study is guided by the following objectives: 

i. To develop a novel physics-based algorithm for solving fuzzy transportation problems, where 

transportation cost, availability, and demand are represented by generalized fuzzy numbers. 

ii. To evaluate the performance of the proposed algorithm in comparison with existing optimization 

techniques, such as genetic algorithms, by assessing its efficiency and accuracy in solving fuzzy 

transportation problems. 
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MATERIALS AND METHODS 

This section outlines the methodology used to develop and evaluate the proposed physics-based algorithms for 

solving fuzzy transportation problems (FTPs). It includes the mathematical formulation of the fuzzy 

transportation problem, a detailed description of the physics-based algorithms adapted for the study, and the 

experimental setup for comparing these algorithms with traditional methods. 

PROBLEM DEFINITION 

FTPs extend classical transportation problems by integrating uncertainties in transportation costs, supply, and 

demand, which are represented using generalized fuzzy numbers. The problem's objective is to minimize the 

fuzzy transportation cost while satisfying supply and demand constraints. 

Objective Function 

Let: 

 𝐶𝑖𝑗 Represent the fuzzy transportation cost from source 𝑖to destination 𝑗. 

 𝑆𝑖  Represent the fuzzy supply available at source 𝑖. 

 𝐷𝑗  Represent the fuzzy demand required at destination 𝑗  

 𝑋𝑖𝑗 Represent the quantity transported from source 𝑖 to destination 𝐽. 

The objective of the FTP is to minimize the total transportation cost: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝐶𝑖𝑗 ∙ 𝑋𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1          (1) 

subject to the constraints: 

 ∑ 𝑋𝑖𝑗
𝑛
𝑗=1 = 𝑆𝑖  (for all sources 𝑖): the total quantity transported from source 𝑖 must not exceed its 

available supply 

 ∑ 𝑋𝑖𝑗
𝑚
𝑖=1 = 𝐷𝑗  (for all destinations 𝑗): the total quantity received by destination 𝑗 must satisfy its 

demand. 

 𝑋𝑖𝑗 ≥ 0: non-negativity constraints on transported quantities. 

Here, 𝐶𝑖𝑗 , 𝑆𝑖and 𝐷𝑖  are fuzzy numbers, and 𝑋𝑖𝑗 are decision variables that need to be determined. 

Fuzzy Numbers and Ranking 

Fuzzy numbers, characterized by membership functions 𝜇𝐴(𝑥), represent uncertainties in transportation costs, 

supply, and demand in fuzzy transportation problems (FTPs). To compare and rank these variables, the study 

adopts a centroid-based ranking method, which condenses fuzzy uncertainty into a scalar value for optimization. 

The centroid �̅� of a fuzzy number �̃� is calculated as: 

�̅� =
∫ 𝑥∙𝜇𝐴(𝑥)𝑑𝑥

∫ 𝜇𝐴(𝑥)𝑑𝑥
           (2) 
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where the numerator represents the weighted mean of the fuzzy set and the denominator normalizes the 

membership function. This approach provides consistent rankings, enabling precise evaluation of fuzzy 

transportation costs (𝐶𝑖𝑗) and constraints on supply (𝑆𝑖) and demand 𝐷𝑖 . The centroid-based ranking is integral 

to optimization, guiding fuzzy neighborhood exploration, and supporting advanced algorithms like GSA, EMA, 

and IWD in solving FTPs effectively. 

Gravitational Search Algorithm (GSA) 

The Gravitational Search Algorithm (GSA), developed by Rashedi et al. (2009), is inspired by Newton’s law of 

gravity. Each solution in the GSA is represented as an object with a mass proportional to its fitness. Heavier 

masses attract lighter ones, simulating the process of searching for an optimal solution by pulling solutions 

closer to more promising regions in the search space. 

Steps of GSA: 

1. Initialization: Generate initial solutions with random positions and velocities. 

2. Fitness Evaluation: Evaluate fitness using the fuzzy transportation cost. 

3. Gravitational Forces: Compute forces between solutions as: 

𝐹𝑖𝑗 = 𝐺 ∙
𝑀𝑖∙𝑀𝑗

𝑅𝑖𝑗
2           (3) 

where 𝐺 is the gravitational constant, 𝑀𝑖 and 𝑀𝑗 are the masses of objects 𝑖 and 𝑗, and 𝑅𝑖𝑗 is the 

distance between them. 

4. Update Positions: Move each solution toward heavier objects using the calculated gravitational force, 

updating their velocities and positions. 

5. Termination: Repeat the process until the algorithm converges or the maximum number of iterations 

is reached. 

Electromagnetism-Like Algorithm (EMA) 

The Electromagnetism-Like Algorithm (EMA), proposed by Birbil and Fang (2003), is inspired by the attraction 

and repulsion forces between charged particles. Each solution is treated as a charged particle, with its charge 

determined by its fitness. Particles with higher fitness attract others, while those with lower fitness repel them, 

guiding the search toward optimal solutions. 

Steps of EMA: 

1. Initialization: Generate an initial population of solutions and assign random charges based on fitness. 

2. Force Calculation: For each solution, calculate the total attraction or repulsion exerted by all other 

solutions. The force exerted on a solution 𝑖 by solution 𝑗 is given by: 

𝐹𝑖𝑗 = 𝑄𝑖 ∙ 𝑄𝑗
1

𝑅𝑖𝑗
          (4) 

where 𝑄𝑖and 𝑄𝑗  are the charges (fitness) of solutions𝑖 and 𝑗 and 𝑅𝑖𝑗 is the distance between them. 

3. Move Solutions: Update the position of each solution based on the resulting forces. 

4. Termination: The process continues until convergence or a pre-defined stopping condition is met. 
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EMA’s strength lies in its ability to balance exploration and exploitation, which is critical for solving fuzzy 

optimization problems.  

Intelligent Water Drops Algorithm (IWD) 

The Intelligent Water Drops (IWD) Algorithm, introduced by Shah-Hosseini (2009), simulates water drops 

eroding riverbeds and depositing soil to find optimal paths. In this algorithm, solutions move through the search 

space like water drops, gradually identifying optimal routes. 

Steps of IWD: 

1. Initialization: Create a population of water drops, each representing a potential solution. 

2. Path Update: Water drops modify the solution landscape by creating new paths. 

3. Velocity and Soil Update: Update the velocity of each drop and adjust paths based on erosion. 

4. Termination: Stop when drops converge on the optimal path or after a set number of iterations. 

GENERALIZED ALGORITHM STRUCTURE 

The proposed physics-based algorithms (GSA, EMA, IWD) follow a common framework for solving the fuzzy 

transportation problem. 

 

Algorithm: Generalized physics-based optimization algorithm for fuzzy transportation problems 

1. Initialization: Generate a population of solutions with initial parameters (e.g., positions, velocities, 

charges). 

2. Fitness Evaluation: Compute fuzzy transportation costs for all solutions. 

3. Optimization Loop: 

o Update solutions based on the specific algorithm: 

 GSA: Apply gravitational forces to update positions and velocities. 

 EMA: Adjust positions based on attraction and repulsion forces. 

 IWD: Simulate erosion and deposition to refine paths. 

o Explore local neighborhoods for further improvement. 

4. Ranking and Selection: Rank solutions by fitness and identify the best. 

5. Termination: Stop when convergence criteria are met. 

EXPERIMENTAL SETUP 

To evaluate the algorithms, several computational experiments are designed using benchmark FTPs of varying 

sizes. The performance of each algorithm is evaluated based on three key metrics: 

1. Solution Quality: Total transportation cost. 

2. Computational Efficiency: Time to convergence. 

3. Robustness: Consistency of solutions across different problem instances. 

The proposed algorithms will be compared against traditional metaheuristics such as Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO).  
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Statistical Significance 

To validate these findings, a Wilcoxon signed-rank test was conducted to compare the performance of the 

physics-based algorithms against GA and PSO. The results confirm that the differences in transportation costs 

are statistically significant (p < 0.05) in both simulated and real-world scenarios. This indicates that while 

physics-based algorithms perform competitively in simulations, traditional metaheuristics offer statistically 

significant advantages in real-world applications. 

RESULTS  

This section presents the results of computational experiments evaluating the performance of the proposed 

physics-based algorithms (GSA, EMA, and IWD) in solving fuzzy transportation problems (FTPs). These are 

compared with traditional metaheuristics (GA and PSO) across metrics like solution quality, efficiency, 

robustness, and scalability, using both simulated instances and real-world data from the supply-chain-data 

dataset. 

SOLUTION QUALITY 

Solution quality is assessed based on the total transportation cost achieved by each algorithm, where lower costs 

indicate better performance. This metric directly evaluates the accuracy of the proposed algorithms. 

Comparative Analysis of Solution Quality 

Table 1 summarizes the transportation costs achieved by each algorithm across simulated small, medium, and 

large problem instances, as well as real-world results derived from supply-chain data. 

Table 1: Transportation costs for different algorithms (simulated and real-world scenarios) 

Algorithm Small Problems 

(5x5) 

Medium Problems 

(10x10) 

Large Problems 

(50x50) 

Real-World (supply-

chain-data) 

GSA 850 1790 11,250 16,512.1 

EMA 880 1820 11,400 75.5 

IWD 860 1800 11,300 1,000.0 

GA 910 1880 12,000 0.069 

PSO 890 1840 11,850 0.00029 

Figure 1 illustrates the best solution vectors for each algorithm, highlighting how these methods approach 

optimization.  
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Figure 1: Convergence behaviour of algorithms 

 

 

Figure 2: Best solution vectors 

The results in Table 1 show that the proposed physics-based algorithms (GSA, EMA, IWD) consistently 

outperform traditional metaheuristics (GA, PSO) in simulated problem instances, with GSA being the most 
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effective, especially for large problems (Figure 1). However, real-world supply chain data reveals the opposite, 

with PSO achieving the lowest transportation cost (0.00029), followed by GA (0.069), while EMA, the best 

physics-based algorithm, reaches a cost of 75.5 (Figure 2). 

These findings suggest that while physics-based algorithms excel in structured and controlled simulations, 

traditional metaheuristics demonstrate superior accuracy in solving real-world FTPs. 

Computational Efficiency 

Computational efficiency evaluates the feasibility of the proposed algorithms in practical applications, focusing 

on execution time and the number of iterations required for convergence. 

Execution Time 

Table 2 presents the execution times for each algorithm across simulated problem sizes and real-world supply-

chain-data. 

Table 2: Execution time for different algorithms 

Algorithm Small Problems 

(5x5) 

Medium Problems 

(10x10) 

Large Problems 

(50x50) 

Real-World (supply-

chain-data) 

GSA 0.25 sec 1.5 sec 15 sec 15 sec 

EMA 0.3 sec 1.7 sec 16 sec 16 sec 

IWD 0.4 sec 1.8 sec 17 sec 17 sec 

GA 0.5 sec 2.0 sec 18 sec 0.5 sec 

PSO 0.45 sec 1.9 sec 17.5 sec 0.45 sec 

Execution times show that physics-based algorithms are generally faster in simulated environments, with GSA 

being the quickest. However, in real-world scenarios, GA and PSO are significantly faster. For instance, PSO 

completes computations in 0.45 seconds, while GSA takes 15 seconds, highlighting the superior computational 

efficiency of traditional metaheuristics in real-world settings. 

Iterations to Convergence 

The number of iterations required for convergence highlights the computational efficiency of the algorithms. 

Figure 2 demonstrates the convergence behaviour of the algorithms over 100 iterations. 
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Figure 2: Convergence of Algorithms Over Iterations 

Physics-based algorithms, particularly GSA, converge quickly in simulations. However, in real-world 

applications, GA and PSO require fewer iterations to achieve optimal solutions, underscoring their adaptability 

and computational efficiency. 

DISCUSSION 

This study highlights the comparative strengths and limitations of physics-based algorithms and traditional 

metaheuristic approaches in solving FTPs. Physics-based algorithms, including GSA, EMA, and IWD, 

demonstrated superior accuracy in simulation environments, excelling in structured and controlled settings. 

These findings align with prior research indicating the effectiveness of physics-based methods in addressing 

global optimization problems (Alatas & Can, 2015; Birbil & Fang, 2003). Their ability to explore complex 

solution spaces efficiently makes them well-suited for FTPs with clearly defined parameters and constraints. 

In contrast, traditional metaheuristics, such as GA and PSO, exhibited stronger performance in real-world 

applications. This mirrors earlier studies where GA and PSO were noted for their adaptability to dynamic and 

uncertain conditions in practical optimization challenges (Rather & Bala, 2020). Their demonstrated ability to 

achieve lower transportation costs and handle variability underscores their robustness in real-world 

transportation systems. For instance, PSO's utility in multimodal optimization and adaptive path planning has 

been established in prior work (Han et al., 2018; Rabanal et al., 2008).  
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Efficiency was another critical consideration in this analysis. Physics-based algorithms required fewer iterations 

to converge in simulations, consistent with previous findings that GSA and similar methods perform well in 

terms of computational speed in structured scenarios (Duman et al., 2010; Rashedi et al., 2009). However, these 

algorithms were slower in real-world applications compared to GA and PSO, which demonstrated faster 

convergence and time efficiency, a trait often cited in metaheuristic studies (Chatterjee et al., 2010; Asi & Dib, 

2010). This trade-off highlights the importance of context in selecting the most suitable optimization approach. 

The proposed physics-based algorithms demonstrated several key strengths. They achieved faster convergence 

rates and better scalability in controlled environments, reflecting their robustness across varying levels of 

uncertainty in transportation scenarios. From a practical perspective, these algorithms provide scalable and 

efficient solutions for optimizing logistics and supply chain operations, even in large transportation networks 

with uncertain conditions. Their adaptability to different levels of uncertainty makes them particularly valuable 

for industries facing dynamic and complex challenges. These findings extend earlier research into the 

adaptability of such algorithms in varied optimization contexts (Shah-hosseini, 2011; Duan et al., 2008). 

From a theoretical standpoint, this study expands the application of physics-based algorithms in fuzzy 

optimization, demonstrating their effectiveness in solving uncertain and complex problems. By applying these 

algorithms to FTPs, this research establishes a framework for future studies in other optimization contexts, 

including production scheduling, inventory management, and resource allocation. 

In summary, this research reveals that physics-based algorithms excel in structured environments, while 

traditional metaheuristics provide practical and efficient solutions for real-world challenges. These findings 

highlight the need for future research aimed at integrating the strengths of both approaches to develop advanced 

optimization frameworks for fuzzy transportation problems. By combining the principles of physics-based 

algorithms with practical and theoretical insights, this study paves the way for addressing broader optimization 

challenges across various fields. 

CONCLUSION 

This study introduced and evaluated three physics-based algorithms, namely GSA, EMA, and IWD, as 

innovative solutions to fuzzy transportation problems (FTPs) characterized by uncertainties in costs, supply, and 

demand. These algorithms outperformed traditional metaheuristics such as GA and PSO in simulated 

environments, delivering higher solution quality, improved computational efficiency, and enhanced robustness 

in managing uncertainties. The research highlights the potential of physics-based methods to address complex 

optimization challenges and proposes new strategies for logistics and supply chain management. 

FUTURE RESEARCH 

Future work could explore multi-objective optimization, refinement of algorithm structures, broader 

applications, and hybrid approaches combining physics-based and traditional algorithms. 
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